IPhone 6 Built by Robots

Queues are forming outside Apple stores in America as everyone awaits the arrival of the new iPhone 6. The much awaited iPhone 6 is Apple’s flagship product and the demand for the iphone is going to surmountable. This is Apple’s 7th generation phone and they will be launching this phone globally at the same time.

Foxconn, the contract manufacturer for Apple, is now manufacturing millions of iPhones, getting ready for the launch. Foxconn decided in 2011 to introduce robots into their assembly line and Apple will be the first to reap the benefits of this new process.

A total of 10,000 robots, costing around USD 20,000, will be installed on the new line. These robots are in the final stages of testing. Assembly is a task that a robot excels in and these robots will be able to improve the rate of production and the quality of the phone produced. One of these robots will be able to produce around 300,000 iPhones per year.

There will definitely be teething issues with the production line but this is a move in the right direction to reduce the dependence on China’s human workforce. This is a right direction given the rising cost of China’s workforce and their recent issues with the way they treat their employees.

Foxconn planned the development of their own robots and it’s final hope is to develop intelligent robots to handle their current assembly work. These robots will be developed for Foxconn only.

Read more here.

WHILL Wheelchair

WHILL is a Japanese startup that has revolutionised the motorised wheelchair. It’s an omnidirectional wheelchair that has put thought into the usability of the product. It won the Red Dot award in 2014.

The wheelchair is able to handle all kinds of terrain and it able to traverse even on grass and the steep slopes of San Francisco. As you can see the various videos, riding around on this wheelchair is smooth and very responsive. This not just functional but the have added some thought into the experience. Since the wheel is omnidirectional, it makes it easy for the wheelchair to mount a vehicle as long as there’s a slope to the vehicle. I love this feature. It is easy to dismount the wheelchair as the handle on the side can shift out of the way.

The wheelchair is ready for pre-order with a price tag of USD 9,500.

Prequel to Self-Driving Cars

Self driving cars have been in the limelight because of Google’s announcements on their autonomous cars on city streets. This isn’t new given that autonomous vehicle technology research has been ongoing for more than 10 years. The direction now is getting the technology on the road, where the rubber hits the road. Google has shown that they have covered the distance on highways. In their latest revelation, Google have their cars on city streets where things can get pretty messy with many cars, bicycles, motorcycles and pedestrians around the vehicle. They have gain confidence to showcase their work in this arena and this is indeed a great achievement. But before this becomes adopted by the masses, we want to look at the little steps that we have been taking to get there.

One component of autonomous vehicles that interest me is Adaptive Cruise Control (ACC) and Advance Driver Assistance Systems (ADAS).

ACC normally keeps the car moving at a set speed but intervenes if necessary to avoid keeping too close to the vehicle in front. It takes control of the throttle and the brake of the vehicle but not the steering. ACC is a upgrade to the cruise control of most vehicles. Many have placed their trust on these systems. It says something about how a driver can trust that a collision does not happen when the ACC takes control. This will be applied to Lane Keeping technology in the near future.

There are many other Advance driver assistance systems (ADAS) including, lane departure warning system, collision avoidance system, traffic sign recognition and other systems in development. This is the first stage towards self-driving cars on the road. People need to trust these basic components first before they can let go of the steering wheel. Do we trust cars to drive themselves, given there are human drivers around us. Roads can be a pretty messy place and machines might not be able to react faster than we can.

Self-driving cars are coming. It is a matter of time and they question is are we ready. You can google survey on self-driving cars or autonomous vehicles and you will find that people generally say no but this is a changing view – all thanks to Google! They convince by making it happen, the best way to do it.

$15.5M Investment in Toy Robots – Orbotix

Orbotix is a robotic toy maker behind Sphero and Ollie.

They are simple robot toys that can be controlled using an iPhone or an Android based phone. There is just something about seeing things move and kids do get very excited, especially if they can make the robot move the way they want. Games on smartphone are now combining items in the physical world. We have seen this with Anki racing cars.


The company will use this round of funding to further their reach in the global market. These toys are not common in Asia at present.

Flying Robot Have Legs

This is what you have seen with bats. They have legs within their wings. This is an interesting structure and consideration for a robot that we hardly think about. UAVs are usually developed for flight and with this approach the robot will be able to move around it’s environment in more ways than one.

This reminds me of RHex from Boston Dynamics. RHex is able to overcome almost all forms of terrain. Imagine with the ability to fly, RHex will be able to overcome more terrains and handle more situations. This certainly has use but it’s up to our imagination.

Zebro – RHex’s Brother

Zebro is a six legged robot conceptualised in TUDelft. It’s a brother of the RHex robot by Boston Dynamics. The aim of the research group is to study and develop control methods for platforms like the RHex. Various learning techniques are being used in the robot and studies are being done to improve the design of the legs and various components on the robot.

The RHex was able to perform locomotion in various undulating terrain. It’s a very promising form of a robot but is it scalable? It would be useful to see this platform scale up to perform task.

 

http://robotics.tudelft.nl/?q=research/zebro-six-legged-robot

Robots are Building the Tesla Model S

WIRED has a recent article about the factory production of the Tesla Model S. The factory is producing around 400 cars a week and the production line is really impressive with the number of robots being used at every stage of production. This is really impressive for a company that started producing cars around 10 years ago. I am really impressed with the amount of automation.

 

Robot Cleaning the Sydney Harbour Bridge

This is the first time in history that the Sydney Harbour Bridge is being cleaned, not by human but by a robot. Sabre Autonomous Solutions, a Sydney robotics start-up,  has received a major investment from Burwell Technologies to commercialize the world’s first grit-blasting robot. Grit-blasting is a tedious process and can be highly hazardous for humans. On top of that, the robot is able to perform it’s task in areas that are difficult for human. There are many steel structures around the world and this robot will be useful for different structures. The funding obtained by Sabre Autonomous Solutions will be used to better the technology and improve the usability of the system.

Sabre Autonomous Solutions has it’s beginnings at University of Technology, Sydney (UTS). The technology developed allows the robot the ability to sense the steel structure and maps a path for the grit-blasting tool. Professor Dikai Liu of the Centre for Autonomous systems at UTS is the lead of the team that developed this technology.

RAPIRO – the latest addition to Kickstarter Robots

Raripo is the creation of Shota Ishiwatari. This is yet another low cost robot like the 3D printed robot – MAKI. It’s a pretty cute robot (rather small) with 12 motors and LED for effects. It runs off a Raspberry Pi and has a camera and PSD distance sensor to add to the ability to the robot. This is one of the first Raspberry Pi projects for robotics. Pledge £199 and you get yourself a robot with all the parts you need by the end of the year. He has already reached his goal with his kickstarter robot.

One interesting aspect of this project is that he will provide the STL 3D files that you can use for printing another set of the robot. The 3D printable robots are coming and it’s a very good idea given the microprocessors and computers are readily available almost everywhere in the world. There is no need to look for a manufacturer to get your parts made (high risk) and this is made to order which reduces the logistical problems.

Unboxing of Baxter from Rethink Robotics at OSRF

Baxter is new kind of robot that is trying to redefine manufacturing robotics. It’s the first robot built for industry with  intelligence and safety of humans in mind. A person is able to work closely with the robot and be able to teach baxter what to do just as he/she would with a human. This is interesting as we have to face the fact that Baxter is still far from human capabilities.

OSRF (Open Source Robotics Foundation), formed to engage the world to push the use of open source robotics software in any form of robotics. It would be great to see how they can make Baxter smarter and more capable in manipulation ,and understanding of both humans and environment.

Check out the excitement in the video!!

Omnidirectional Track Base

This is a very really interesting platform. It has the capability of a tracked base with omnidirectional track base capabilities. We typically use tracked robots as they are able to overcome various obstacles and handle even stair climbing. But there isn’t any track base to date that has omni directional capability.

This omni-crawler is from Osaka University and was developed using the omni-ball concept. The omni-ball design is made up of 2 hemisphere which rotates independently and it also rotates around the ball’s axis which allows the base to move as an omni-directional platform. They have plans to use this concept to develop an interplanetary explorer. This is certainly useful for mobile manipulation in different terrain (indoor or outdoor). I will be tracking the progress of this development closely.

Team ViGIR at DARPA Robotics Challenge

Team ViGIR is a team consisting of members from Virginia Tech, Technische Universität Darmstadt and TORC.

darpa DRC scenario

They will be taking part in Track B in the DARPA Robotics Challenge where they will use the PETMAN instead of developing their own robot. The task are shown in the chart above. TORC Robotics will take the lead developing the algorithms required for the humanoid to perform during the competition.

TORC has developed autonomous navigation kits for vehicles and they develop components for autonomous vehicles. Teleoperation with autonomy of vehicles is one technology that they have that will improve the usability of PETMAN robot. TU Darmstadt‘s Simulation, Systems Optimization and Robotics group will join the team. They have developed autonomous robot team and researched in dynamic modelling and optimisation methods in simulation. Last but not the least important is the Human-Computer Interaction Group from Virginia Tech. The team consist of groups with different expertises that make them suited for Track B.

Sliding Autonomy is a buzz word that is used widely in this competition and some feel that this will make the difference between the various teams. This is important as robots are still unable to perform robustly in the given scenario. Human intervention is still required and this is allowed during this competition. This makes it interesting when some form of autonomy is given to the robot but there are of course situations human teleoperation might be more suited. It’s about striking a balance depending on the capability of the robots. In Track B, all teams will use the PETMAN which means that they can concentrate on developing algorithms and teleoperation capabilities for use with the PETMAN. This is certainly a scenario that makes more sense today, as we take the first step away from teleoperating “dumb” robots. Heaphy Robotics was an initiative by Willow Garage a while back (watch video below) that allowed people from around the world to gain control of the PR2 to perform task without their premises. As seen in the video, you could either take full manual control over the robot or allow the robot some form of autonomy. That’s a good example of sliding autonomy.

 

Team Steel at DARPA Robotics Challenge

DARPA Robotics Challenge is the next grand challenge that’s really getting most of the robotics community on their toes. The goal of this program is to develop ground robots that are able to operate in degraded human-engineered environments performing complex task such as opening a valve, climb a ladder or even drive a car. This is in response to the difficulties faced by robots deployed during the Fukushima Daiichi nuclear incident. That revealed a lot about the current capabilities of the robots in the market today. It’s not that the robots are incapable but it’s a matter about using the wrong tool for the job.

Team Steel, led by Christopher Atkeson, is one of the two CMU teams taking part in the DARPA Robotics Challenge. They have selected to take part in Track B (using a DARPA-provided robot, the PETMAN) while their counterparts (TARTAN RESCUE, lead by Tony Stentz)  have chosen to take part in track A where members of that team will develop a robot of their own.

 

They have worked on the Sarcos Humanoid Robot, a robot similar to the PETMAN. They will implement some learning methods and interesting techniques for their robot. This will definitely be beneficial to the other team given CMU has fielded 2 teams in this competition.